В очередной раз после переустановки Windows осознал, что надо накатить драйвера, CUDA, cuDNN, Tensorflow/Keras для обучения нейронных сетей.

Каждый раз для меня это оказывается несложной, но времязатратной операцией: найти подходящую комбинацию Tensorflow/Keras, CUDA, cuDNN и Python несложно, но вспоминаю про эти зависимости только в тот момент, когда при импорте Tensorflow вижу, что видеокарта не обнаружена и начинаю поиск нужной страницы в документации Tensorflow.

В этот раз ситуация немного усложнилась. Помимо установки Tensorflow мне потребовалось установить PyTorch. Со своими зависимостями и поддерживаемыми версиями Python, CUDA и cuDNN.

По итогам нескольких часов экспериментов решил, что надо зафиксировать все полезные ссылки в одном посте для будущего меня.

Краткий алгоритм установки Tensorflow и PyTorch

Примечание: Установить Tensorflow и PyTorch можно в одном виртуальном окружении, но в статье этого алгоритма нет.

Подготовка к установке

  1. Определить какая версия Python поддерживается Tensorflow и PyTorch (на момент написания статьи мне не удалось установить PyTorch в виртуальном окружении с Python 3.9.5)
  2. Для выбранной версии Python найти подходящие версии Tensorflow и PyTorch
  3. Определить, какие версии CUDA поддерживают выбранные ранее версии Tensorflow и PyTorch
  4. Определить поддерживаемую версию cuDNN для Tensorflow – не все поддерживаемые CUDA версии cuDNN поддерживаются Tensorflow. Для PyTorch этой особенности не заметил

Установка CUDA и cuDNN

  1. Скачиваем подходящую версию CUDA и устанавливаем. Можно установить со всеми значениями по умолчанию
  2. Скачиваем cuDNN, подходящую для выбранной версии Tensorflow (п.1.2). Для скачивания cuDNN потребуется регистрация на сайте NVidia. “Установка” cuDNN заключается в распакове архива и заменой существующих файлов CUDA на файлы из архива

Устанавливаем Tensorflow

  1. Создаём виртуальное окружение для Tensorflow c выбранной версией Python. Назовём его, например, py38tf
  2. Переключаемся в окружение py38tf и устанавливаем поддерживаемую версию Tensorflow pip install tensorflow==x.x.x
  3. Проверяем поддержку GPU командой
    python -c "import tensorflow as tf; print('CUDA available' if tf.config.list_physical_devices('GPU') else 'CUDA not available')"
    

Устанавливаем PyTorch

  1. Создаём виртуальное окружение для PyTorch c выбранной версией Python. Назовём его, например, py38torch
  2. Переключаемся в окружение py38torch и устанавливаем поддерживаемую версию PyTorch
  3. Проверяем поддержку GPU командой
python -c "import torch; print('CUDA available' if torch.cuda.is_available() else 'CUDA not available')"

В моём случае заработала комбинация:

  • Python 3.8.8
  • Драйвер NVidia 441.22
  • CUDA 10.1
  • cuDNN 7.6
  • Tensorflow 2.3.0
  • PyTorch 1.7.1+cu101

Tensorflow и PyTorch установлены в разных виртуальных окружениях.

Итого

Польза этой статьи будет понятна не скоро: систему переустанавливаю я не часто.

Если воспользуетесь этим алгоритмом и найдёте какие-то ошибки – пишите в комментарии

Если вам понравилась статья, то можете зайти в мой telegram-канал https://t.me/makesomecode. В канал попадают небольшие заметки о Python, .NET, Go.